| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > gonairi | |||
| Description: Reverse inference form of df-gonai 298 (Contributed by la korvo, 8-Aug-2023.) |
| Ref | Expression |
|---|---|
| gonairi.0 | ⊢ ge ga broda gi brode gi naku ge broda gi brode |
| Ref | Expression |
|---|---|
| gonairi | ⊢ gonai broda gi brode |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gonairi.0 | . 2 ⊢ ge ga broda gi brode gi naku ge broda gi brode | |
| 2 | df-gonai 298 | . 2 ⊢ go gonai broda gi brode gi ge ga broda gi brode gi naku ge broda gi brode | |
| 3 | 1, 2 | bi-rev 102 | 1 ⊢ gonai broda gi brode |
| Colors of variables: sumti selbri bridi |
| Syntax hints: ge bge 47 ga bga 160 naku bnk 272 gonai bgon 297 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 df-gonai 298 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |