brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > gonairi |
Description: Reverse inference form of df-gonai 225 (Contributed by la korvo, 8-Aug-2023.) |
Ref | Expression |
---|---|
gonairi.0 | ⊢ ge ga broda gi brode gi naku zo'u ge broda gi brode |
Ref | Expression |
---|---|
gonairi | ⊢ gonai broda gi brode |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gonairi.0 | . 2 ⊢ ge ga broda gi brode gi naku zo'u ge broda gi brode | |
2 | df-gonai 225 | . 2 ⊢ go gonai broda gi brode gi ge ga broda gi brode gi naku zo'u ge broda gi brode | |
3 | 1, 2 | bi-rev 70 | 1 ⊢ gonai broda gi brode |
Colors of variables: sumti selbri bridi |
Syntax hints: ge bge 33 ga bga 127 naku bnk 210 gonai bgon 224 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 14 ax-ge-le 34 ax-ge-re 35 ax-ge-in 36 |
This theorem depends on definitions: df-go 52 df-gonai 225 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |