Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  gonairi

Theorem gonairi 302
Description: Reverse inference form of df-gonai 298 (Contributed by la korvo, 8-Aug-2023.)
Hypothesis
Ref Expression
gonairi.0ge ga broda gi brode gi naku ge broda gi brode
Assertion
Ref Expression
gonairigonai broda gi brode

Proof of Theorem gonairi
StepHypRef Expression
1 gonairi.0 . 2ge ga broda gi brode gi naku ge broda gi brode
2 df-gonai 298 . 2go gonai broda gi brode gi ge ga broda gi brode gi naku ge broda gi brode
31, 2bi-rev 102 1gonai broda gi brode
Colors of variables: sumti selbri bridi
Syntax hints:   ge bge 47   ga bga 160   naku bnk 272   gonai bgon 297
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 48  ax-ge-re 49  ax-ge-in 50
This theorem depends on definitions:  df-go 83  df-gonai 298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator