brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > gonairi |
Description: Reverse inference form of df-gonai 261 (Contributed by la korvo, 8-Aug-2023.) |
Ref | Expression |
---|---|
gonairi.0 | ⊢ ge ga broda gi brode gi naku ge broda gi brode |
Ref | Expression |
---|---|
gonairi | ⊢ gonai broda gi brode |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gonairi.0 | . 2 ⊢ ge ga broda gi brode gi naku ge broda gi brode | |
2 | df-gonai 261 | . 2 ⊢ go gonai broda gi brode gi ge ga broda gi brode gi naku ge broda gi brode | |
3 | 1, 2 | bi-rev 80 | 1 ⊢ gonai broda gi brode |
Colors of variables: sumti selbri bridi |
Syntax hints: ge bge 42 ga bga 137 naku bnk 236 gonai bgon 260 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 43 ax-ge-re 44 ax-ge-in 45 |
This theorem depends on definitions: df-go 61 df-gonai 261 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |