brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > kinfiri |
Description: Reverse inference form of df-kinfi 482 (Contributed by la korvo, 25-Jun-2024.) |
Ref | Expression |
---|---|
kinfiri.0 | ⊢ ro da poi ke'a cmima ko'e ku'o zo'u ro de poi ke'a cmima ko'e ku'o zo'u ganai da ckini de ko'a gi de ckini da ko'a |
Ref | Expression |
---|---|
kinfiri | ⊢ ko'a kinfi ko'e |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kinfiri.0 | . 2 ⊢ ro da poi ke'a cmima ko'e ku'o zo'u ro de poi ke'a cmima ko'e ku'o zo'u ganai da ckini de ko'a gi de ckini da ko'a | |
2 | df-kinfi 482 | . 2 ⊢ go ko'a kinfi ko'e gi ro da poi ke'a cmima ko'e ku'o zo'u ro de poi ke'a cmima ko'e ku'o zo'u ganai da ckini de ko'a gi de ckini da ko'a | |
3 | 1, 2 | bi-rev 80 | 1 ⊢ ko'a kinfi ko'e |
Colors of variables: sumti selbri bridi |
Syntax hints: tsb 1 tss 2 ganai bgan 9 ro brd 191 cmima sbcmima 282 ckini sbckini 310 ro brdp 412 kinfi sbkinfi 481 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 43 ax-ge-re 44 ax-ge-in 45 |
This theorem depends on definitions: df-go 61 df-kinfi 482 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |