| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > kuzypauri | |||
| Description: Reverse inference form of df-kuzypau 643 (Contributed by la korvo, 4-Sep-2023.) |
| Ref | Expression |
|---|---|
| kuzypauri.0 | ⊢ su'o da zo'u ko'a .e ko'e pagbu da |
| Ref | Expression |
|---|---|
| kuzypauri | ⊢ ko'a kuzypau ko'e |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kuzypauri.0 | . 2 ⊢ su'o da zo'u ko'a .e ko'e pagbu da | |
| 2 | df-kuzypau 643 | . 2 ⊢ go ko'a kuzypau ko'e gi su'o da zo'u ko'a .e ko'e pagbu da | |
| 3 | 1, 2 | bi-rev 102 | 1 ⊢ ko'a kuzypau ko'e |
| Colors of variables: sumti selbri bridi |
| Syntax hints: .e sje 146 su'o bsd 414 pagbu sbpagbu 629 kuzypau sbkuzypau 642 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 df-kuzypau 643 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |