| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > niblii | |||
| Description: Inference form of df-nibli 506 (Contributed by la korvo, 19-Jul-2024.) |
| Ref | Expression |
|---|---|
| niblii.0 | ⊢ pa du'u broda kei nibli pa du'u brode kei |
| Ref | Expression |
|---|---|
| niblii | ⊢ ganai broda gi brode |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | niblii.0 | . 2 ⊢ pa du'u broda kei nibli pa du'u brode kei | |
| 2 | df-nibli 506 | . 2 ⊢ go pa du'u broda kei nibli pa du'u brode kei gi ganai broda gi brode | |
| 3 | 1, 2 | bi 101 | 1 ⊢ ganai broda gi brode |
| Colors of variables: sumti selbri bridi |
| Syntax hints: ganai bgan 9 pa sdu 489 nibli sbnibli 505 |
| This theorem was proved from axioms: ax-mp 10 ax-ge-le 48 |
| This theorem depends on definitions: df-go 83 df-nibli 506 |
| This theorem is referenced by: nibliii 508 |
| Copyright terms: Public domain | W3C validator |