brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > niblii |
Description: Inference form of df-nibli 410 (Contributed by la korvo, 19-Jul-2024.) |
Ref | Expression |
---|---|
niblii.0 | ⊢ 1 du'u broda kei nibli 1 du'u brode kei |
Ref | Expression |
---|---|
niblii | ⊢ ganai broda gi brode |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | niblii.0 | . 2 ⊢ 1 du'u broda kei nibli 1 du'u brode kei | |
2 | df-nibli 410 | . 2 ⊢ go 1 du'u broda kei nibli 1 du'u brode kei gi ganai broda gi brode | |
3 | 1, 2 | bi 69 | 1 ⊢ ganai broda gi brode |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 1 sdu 395 nibli sbnibli 409 |
This theorem was proved from axioms: ax-mp 10 ax-ge-le 34 |
This theorem depends on definitions: df-go 52 df-nibli 410 |
This theorem is referenced by: nibliii 412 |
Copyright terms: Public domain | W3C validator |