Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  niblii

Theorem niblii 507
Description: Inference form of df-nibli 506 (Contributed by la korvo, 19-Jul-2024.)
Hypothesis
Ref Expression
niblii.0pa du'u broda kei nibli pa du'u brode kei
Assertion
Ref Expression
nibliiganai broda gi brode

Proof of Theorem niblii
StepHypRef Expression
1 niblii.0 . 2pa du'u broda kei nibli pa du'u brode kei
2 df-nibli 506 . 2go pa du'u broda kei nibli pa du'u brode kei gi ganai broda gi brode
31, 2bi 101 1ganai broda gi brode
Colors of variables: sumti selbri bridi
Syntax hints:   ganai bgan 9   pa sdu 489   nibli sbnibli 505
This theorem was proved from axioms:  ax-mp 10  ax-ge-le 48
This theorem depends on definitions:  df-go 83  df-nibli 506
This theorem is referenced by:  nibliii  508
  Copyright terms: Public domain W3C validator