brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > nomei-gaiho |
Description: If the empty set is inhabited, then there is a contradiction. (Contributed by la korvo, 16-May-2024.) |
Ref | Expression |
---|---|
nomei-gaiho.0 | ⊢ ko'a cmima le nomei ku |
Ref | Expression |
---|---|
nomei-gaiho | ⊢ gai'o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nomei 250 | . 2 ⊢ naku zo'u ko'a cmima le nomei ku | |
2 | nomei-gaiho.0 | . 2 ⊢ ko'a cmima le nomei ku | |
3 | 1, 2 | nakuii 216 | 1 ⊢ gai'o |
Colors of variables: sumti selbri bridi |
Syntax hints: cmima sbcmima 246 le snomei 249 |
This theorem was proved from axioms: ax-mp 10 ax-ge-le 34 |
This theorem depends on definitions: df-go 52 df-naku 211 df-nomei 250 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |