Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  nomei-gaiho

Theorem nomei-gaiho 325
Description: If the empty set is inhabited, then there is a contradiction. (Contributed by la korvo, 16-May-2024.)
Hypothesis
Ref Expression
nomei-gaiho.0ko'a cmima le nomei ku
Assertion
Ref Expression
nomei-gaihogai'o

Proof of Theorem nomei-gaiho
StepHypRef Expression
1 df-nomei 324 . 2naku ko'a cmima le nomei ku
2 nomei-gaiho.0 . 2ko'a cmima le nomei ku
31, 2nakuii 278 1gai'o
Colors of variables: sumti selbri bridi
Syntax hints:   cmima sbcmima 319   le snomei 323
This theorem was proved from axioms:  ax-mp 10  ax-ge-le 48
This theorem depends on definitions:  df-go 83  df-naku 273  df-nomei 324
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator