Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  onairi

Theorem onairi 233
Description: Reverse inference form of df-onai 231 (Contributed by la korvo, 16-Aug-2023.)
Hypothesis
Ref Expression
onairi.0gonai ko'a bo'a gi ko'e bo'a
Assertion
Ref Expression
onairiko'a .onai ko'e bo'a

Proof of Theorem onairi
StepHypRef Expression
1 onairi.0 . 2gonai ko'a bo'a gi ko'e bo'a
2 df-onai 231 . 2go ko'a .onai ko'e bo'a gi gonai ko'a bo'a gi ko'e bo'a
31, 2bi-rev 70 1ko'a .onai ko'e bo'a
Colors of variables: sumti selbri bridi
Syntax hints:  btb 3  gonai bgon 224  .onai sjonai 230
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-le 34  ax-ge-re 35  ax-ge-in 36
This theorem depends on definitions:  df-go 52  df-onai 231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator