Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  poi-pari

Theorem poi-pari 503
Description: Reverse inference form of df-poi-pa 501 (Contributed by la korvo, 15-Oct-2024.)
Hypothesis
Ref Expression
poi-pari.01 da zo'u ganai da bo'a gi broda
Assertion
Ref Expression
poi-pari1 da poi ke'a bo'a ku'o zo'u broda

Proof of Theorem poi-pari
StepHypRef Expression
1 poi-pari.0 . 21 da zo'u ganai da bo'a gi broda
2 df-poi-pa 501 . 2go 1 da poi ke'a bo'a ku'o zo'u broda gi 1 da zo'u ganai da bo'a gi broda
31, 2bi-rev 80 11 da poi ke'a bo'a ku'o zo'u broda
Colors of variables: sumti selbri bridi
Syntax hints:  btb 3  ganai bgan 9  1 bpd 496  1 bpdp 500
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 43  ax-ge-re 44  ax-ge-in 45
This theorem depends on definitions:  df-go 61  df-poi-pa 501
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator