brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > poi-pari |
Description: Reverse inference form of df-poi-pa 501 (Contributed by la korvo, 15-Oct-2024.) |
Ref | Expression |
---|---|
poi-pari.0 | ⊢ 1 da zo'u ganai da bo'a gi broda |
Ref | Expression |
---|---|
poi-pari | ⊢ 1 da poi ke'a bo'a ku'o zo'u broda |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poi-pari.0 | . 2 ⊢ 1 da zo'u ganai da bo'a gi broda | |
2 | df-poi-pa 501 | . 2 ⊢ go 1 da poi ke'a bo'a ku'o zo'u broda gi 1 da zo'u ganai da bo'a gi broda | |
3 | 1, 2 | bi-rev 80 | 1 ⊢ 1 da poi ke'a bo'a ku'o zo'u broda |
Colors of variables: sumti selbri bridi |
Syntax hints: btb 3 ganai bgan 9 1 bpd 496 1 bpdp 500 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 43 ax-ge-re 44 ax-ge-in 45 |
This theorem depends on definitions: df-go 61 df-poi-pa 501 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |