Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  poi-rori

Theorem poi-rori 416
Description: Reverse inference form of df-poi-ro 414 (Contributed by la korvo, 11-Aug-2023.)
Hypothesis
Ref Expression
poi-rori.0ro da zo'u ganai da bo'a gi broda
Assertion
Ref Expression
poi-roriro da poi ke'a bo'a ku'o zo'u broda

Proof of Theorem poi-rori
StepHypRef Expression
1 poi-rori.0 . 2ro da zo'u ganai da bo'a gi broda
2 df-poi-ro 414 . 2go ro da poi ke'a bo'a ku'o zo'u broda gi ro da zo'u ganai da bo'a gi broda
31, 2bi-rev 80 1ro da poi ke'a bo'a ku'o zo'u broda
Colors of variables: sumti selbri bridi
Syntax hints:  btb 3  ganai bgan 9  ro brd 191  ro brdp 412
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 43  ax-ge-re 44  ax-ge-in 45
This theorem depends on definitions:  df-go 61  df-poi-ro 414
This theorem is referenced by:  poi-gen  417
  Copyright terms: Public domain W3C validator