| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > poi-rori | |||
| Description: Reverse inference form of df-poi-ro 465 (Contributed by la korvo, 11-Aug-2023.) |
| Ref | Expression |
|---|---|
| poi-rori.0 | ⊢ ro da zo'u ganai da bo'a gi broda |
| Ref | Expression |
|---|---|
| poi-rori | ⊢ ro da poi ke'a bo'a ku'o zo'u broda |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poi-rori.0 | . 2 ⊢ ro da zo'u ganai da bo'a gi broda | |
| 2 | df-poi-ro 465 | . 2 ⊢ go ro da poi ke'a bo'a ku'o zo'u broda gi ro da zo'u ganai da bo'a gi broda | |
| 3 | 1, 2 | bi-rev 102 | 1 ⊢ ro da poi ke'a bo'a ku'o zo'u broda |
| Colors of variables: sumti selbri bridi |
| Syntax hints: btb 3 ganai bgan 9 ro brd 222 ro brdp 463 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 df-poi-ro 465 |
| This theorem is referenced by: poi-gen 468 |
| Copyright terms: Public domain | W3C validator |