| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > ro-quantri | |||
| Description: Reverse inference form of df-ro-quant 471 (Contributed by la korvo, 12-Sep-2023.) |
| Ref | Expression |
|---|---|
| ro-quantri.0 | ⊢ ro da poi ke'a bu'a ku'o zo'u da bu'e |
| Ref | Expression |
|---|---|
| ro-quantri | ⊢ ro bu'a cu bu'e |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ro-quantri.0 | . 2 ⊢ ro da poi ke'a bu'a ku'o zo'u da bu'e | |
| 2 | df-ro-quant 471 | . 2 ⊢ go ro bu'a cu bu'e gi ro da poi ke'a bu'a ku'o zo'u da bu'e | |
| 3 | 1, 2 | bi-rev 102 | 1 ⊢ ro bu'a cu bu'e |
| Colors of variables: sumti selbri bridi |
| Syntax hints: tsb 1 ro brdp 463 ro brbc 470 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 df-ro-quant 471 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |