Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  ro-quantri

Theorem ro-quantri 380
Description: Reverse inference form of df-ro-quant 378 (Contributed by la korvo, 12-Sep-2023.)
Hypothesis
Ref Expression
ro-quantri.0ro da poi ke'a bu'a ku'o zo'u da bu'e
Assertion
Ref Expression
ro-quantriro bu'a cu bu'e
Distinct variable group:   bu'a ,bu'e

Proof of Theorem ro-quantri
StepHypRef Expression
1 ro-quantri.0 . 2ro da poi ke'a bu'a ku'o zo'u da bu'e
2 df-ro-quant 378 . 2go ro bu'a cu bu'e gi ro da poi ke'a bu'a ku'o zo'u da bu'e
31, 2bi-rev 70 1ro bu'a cu bu'e
Colors of variables: sumti selbri bridi
Syntax hints:  tsb 1  ro brd 177  ro brdp 370  ro brbc 377
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-le 34  ax-ge-re 35  ax-ge-in 36
This theorem depends on definitions:  df-go 52  df-ro-quant 378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator