| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > steciri | |||
| Description: Reverse inference form of df-steci 381 (Contributed by la korvo, 17-Aug-2023.) |
| Ref | Expression |
|---|---|
| steciri.0 | ⊢ ge ko'e ckaji ko'a gi ko'e cmima ko'i |
| Ref | Expression |
|---|---|
| steciri | ⊢ ko'a steci ko'e ko'i |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | steciri.0 | . 2 ⊢ ge ko'e ckaji ko'a gi ko'e cmima ko'i | |
| 2 | df-steci 381 | . 2 ⊢ go ko'a steci ko'e ko'i gi ge ko'e ckaji ko'a gi ko'e cmima ko'i | |
| 3 | 1, 2 | bi-rev 102 | 1 ⊢ ko'a steci ko'e ko'i |
| Colors of variables: sumti selbri bridi |
| Syntax hints: ge bge 47 cmima sbcmima 319 ckaji sbckaji 342 steci sbsteci 380 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 df-steci 381 |
| This theorem is referenced by: stecirii 384 |
| Copyright terms: Public domain | W3C validator |