| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > dunlii | |||
| Description: Inference form of df-dunli 366 (Contributed by la korvo, 23-Jun-2024.) |
| Ref | Expression |
|---|---|
| dunlii.0 | ⊢ ko'a dunli ko'e ko'i |
| Ref | Expression |
|---|---|
| dunlii | ⊢ ko'a .o ko'e ckini ko'o ko'i |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dunlii.0 | . 2 ⊢ ko'a dunli ko'e ko'i | |
| 2 | df-dunli 366 | . 2 ⊢ go ko'a dunli ko'e ko'i gi ko'a .o ko'e ckini ko'o ko'i | |
| 3 | 1, 2 | bi 101 | 1 ⊢ ko'a .o ko'e ckini ko'o ko'i |
| Colors of variables: sumti selbri bridi |
| Syntax hints: .o sjo 197 ckini sbckini 347 dunli sbdunli 364 |
| This theorem was proved from axioms: ax-mp 10 ax-ge-le 48 |
| This theorem depends on definitions: df-go 83 df-dunli 366 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |