Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  gihonaii

Theorem gihonaii 313
Description: Inference form of df-gihonai 312 (Contributed by la korvo, 14-Aug-2023.)
Hypothesis
Ref Expression
gihonaii.0ko'a bo'a gi'onai bo'e
Assertion
Ref Expression
gihonaiigonai ko'a bo'a gi ko'a bo'e

Proof of Theorem gihonaii
StepHypRef Expression
1 gihonaii.0 . 2ko'a bo'a gi'onai bo'e
2 df-gihonai 312 . 2go ko'a bo'a gi'onai bo'e gi gonai ko'a bo'a gi ko'a bo'e
31, 2bi 101 1gonai ko'a bo'a gi ko'a bo'e
Colors of variables: sumti selbri bridi
Syntax hints:  btb 3   gonai bgon 297   gi'onai tgihonai 311
This theorem was proved from axioms:  ax-mp 10  ax-ge-le 48
This theorem depends on definitions:  df-go 83  df-gihonai 312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator