brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > gihonairi |
Description: Inference form of df-gihonai 239 (Contributed by la korvo, 14-Aug-2023.) |
Ref | Expression |
---|---|
gihonairi.0 | ⊢ gonai ko'a bo'a gi ko'a bo'e |
Ref | Expression |
---|---|
gihonairi | ⊢ ko'a bo'a gi'onai bo'e |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gihonairi.0 | . 2 ⊢ gonai ko'a bo'a gi ko'a bo'e | |
2 | df-gihonai 239 | . 2 ⊢ go ko'a bo'a gi'onai bo'e gi gonai ko'a bo'a gi ko'a bo'e | |
3 | 1, 2 | bi-rev 70 | 1 ⊢ ko'a bo'a gi'onai bo'e |
Colors of variables: sumti selbri bridi |
Syntax hints: btb 3 gonai bgon 224 gi'onai tgihonai 238 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 14 ax-ge-le 34 ax-ge-re 35 ax-ge-in 36 |
This theorem depends on definitions: df-go 52 df-gihonai 239 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |