| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > gihonairi | |||
| Description: Inference form of df-gihonai 312 (Contributed by la korvo, 14-Aug-2023.) |
| Ref | Expression |
|---|---|
| gihonairi.0 | ⊢ gonai ko'a bo'a gi ko'a bo'e |
| Ref | Expression |
|---|---|
| gihonairi | ⊢ ko'a bo'a gi'onai bo'e |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gihonairi.0 | . 2 ⊢ gonai ko'a bo'a gi ko'a bo'e | |
| 2 | df-gihonai 312 | . 2 ⊢ go ko'a bo'a gi'onai bo'e gi gonai ko'a bo'a gi ko'a bo'e | |
| 3 | 1, 2 | bi-rev 102 | 1 ⊢ ko'a bo'a gi'onai bo'e |
| Colors of variables: sumti selbri bridi |
| Syntax hints: btb 3 gonai bgon 297 gi'onai tgihonai 311 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 df-gihonai 312 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |