Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  janaii

Theorem janaii 106
Description: Inference form of df-janai 105 (Contributed by la korvo, 16-Aug-2023.)
Hypothesis
Ref Expression
janaii.0ko'a bu'e janai bu'a ko'e
Assertion
Ref Expression
janaiiganai ko'a bu'a ko'e gi ko'a bu'e ko'e
Distinct variable group:   bu'a ,bu'e

Proof of Theorem janaii
StepHypRef Expression
1 janaii.0 . 2ko'a bu'e janai bu'a ko'e
2 df-janai 105 . 2go ko'a bu'e janai bu'a ko'e gi ganai ko'a bu'a ko'e gi ko'a bu'e ko'e
31, 2bi 79 1ganai ko'a bu'a ko'e gi ko'a bu'e ko'e
Colors of variables: sumti selbri bridi
Syntax hints:  ganai bgan 9  janai sbjanai 104
This theorem was proved from axioms:  ax-mp 10  ax-ge-le 43
This theorem depends on definitions:  df-go 61  df-janai 105
This theorem is referenced by:  janaiii  107
  Copyright terms: Public domain W3C validator