Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  nagihaii

Theorem nagihaii 102
Description: Inference form of df-nagiha 100 (Contributed by la korvo, 17-Aug-2023.)
Hypotheses
Ref Expression
nagihaii.0ko'a bo'a nagi'a bo'e
nagihaii.1ko'a bo'a
Assertion
Ref Expression
nagihaiiko'a bo'e

Proof of Theorem nagihaii
StepHypRef Expression
1 nagihaii.1 . 2ko'a bo'a
2 nagihaii.0 . . 3ko'a bo'a nagi'a bo'e
32nagihai 101 . 2ganai ko'a bo'a gi ko'a bo'e
41, 3ax-mp 10 1ko'a bo'e
Colors of variables: sumti selbri bridi
Syntax hints:  btb 3
This theorem was proved from axioms:  ax-mp 10  ax-ge-le 34
This theorem depends on definitions:  df-go 52  df-nagiha 100
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator