Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  pameii

Theorem pameii 328
Description: Inference form of df-pamei 327 (Contributed by la korvo, 16-May-2024.)
Hypothesis
Ref Expression
pameii.0ko'a pamei ko'e .e ko'i
Assertion
Ref Expression
pameiiko'e du ko'i

Proof of Theorem pameii
StepHypRef Expression
1 pameii.0 . 2ko'a pamei ko'e .e ko'i
2 df-pamei 327 . 2go ko'a pamei ko'e .e ko'i gi ko'e du ko'i
31, 2bi 101 1ko'e du ko'i
Colors of variables: sumti selbri bridi
Syntax hints:   .e sje 146   du sbdu 250   pamei sbpamei 326
This theorem was proved from axioms:  ax-mp 10  ax-ge-le 48
This theorem depends on definitions:  df-go 83  df-pamei 327
This theorem is referenced by:  pameiii  329
  Copyright terms: Public domain W3C validator