| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > pameii | |||
| Description: Inference form of df-pamei 327 (Contributed by la korvo, 16-May-2024.) |
| Ref | Expression |
|---|---|
| pameii.0 | ⊢ ko'a pamei ko'e .e ko'i |
| Ref | Expression |
|---|---|
| pameii | ⊢ ko'e du ko'i |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pameii.0 | . 2 ⊢ ko'a pamei ko'e .e ko'i | |
| 2 | df-pamei 327 | . 2 ⊢ go ko'a pamei ko'e .e ko'i gi ko'e du ko'i | |
| 3 | 1, 2 | bi 101 | 1 ⊢ ko'e du ko'i |
| Colors of variables: sumti selbri bridi |
| Syntax hints: .e sje 146 du sbdu 250 pamei sbpamei 326 |
| This theorem was proved from axioms: ax-mp 10 ax-ge-le 48 |
| This theorem depends on definitions: df-go 83 df-pamei 327 |
| This theorem is referenced by: pameiii 329 |
| Copyright terms: Public domain | W3C validator |