brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > subi |
Description: Inference form of df-sub 389 (Contributed by la korvo, 22-Jun-2024.) |
Ref | Expression |
---|---|
subi.0 | ⊢ [ ko'a / da ] broda |
Ref | Expression |
---|---|
subi | ⊢ ge ganai da du ko'a gi broda gi su'o da zo'u ge da du ko'a gi broda |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subi.0 | . 2 ⊢ [ ko'a / da ] broda | |
2 | df-sub 389 | . 2 ⊢ go [ ko'a / da ] broda gi ge ganai da du ko'a gi broda gi su'o da zo'u ge da du ko'a gi broda | |
3 | 1, 2 | bi 79 | 1 ⊢ ge ganai da du ko'a gi broda gi su'o da zo'u ge da du ko'a gi broda |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 ge bge 42 du sbdu 214 su'o bsd 377 [ bsub 388 |
This theorem was proved from axioms: ax-mp 10 ax-ge-le 43 |
This theorem depends on definitions: df-go 61 df-sub 389 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |