![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > subt |
Description: Theorems are invariant under substitution. (Contributed by la korvo, 9-Jul-2025.) |
Ref | Expression |
---|---|
subt.0 | ⊢ broda |
Ref | Expression |
---|---|
subt | ⊢ [ ko'a / da ] broda |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subt.0 | . 2 ⊢ broda | |
2 | 1 | nfth 441 | . . 3 ⊢ na'a'u da zo'u broda |
3 | 2 | subf 457 | . 2 ⊢ go [ ko'a / da ] broda gi broda |
4 | 1, 3 | bi-rev 102 | 1 ⊢ [ ko'a / da ] broda |
Colors of variables: sumti selbri bridi |
Syntax hints: [ bsub 446 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 ax-gen1 224 ax-spec1 228 ax-qi1 234 ax-ro1-nf 249 ax-ex 416 ax-eb 418 ax-eq 420 |
This theorem depends on definitions: df-go 83 df-nahahu 435 df-sub 447 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |