| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > subf | |||
| Description: Variables which are not free can be substituted. (Contributed by la korvo, 9-Jul-2025.) |
| Ref | Expression |
|---|---|
| subf.0 | ⊢ na'a'u da zo'u broda |
| Ref | Expression |
|---|---|
| subf | ⊢ go [ ko'a / da ] broda gi broda |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subf.0 | . . 3 ⊢ na'a'u da zo'u broda | |
| 2 | 1 | nfri 439 | . 2 ⊢ ganai broda gi ro da zo'u broda |
| 3 | 2 | subh 456 | 1 ⊢ go [ ko'a / da ] broda gi broda |
| Colors of variables: sumti selbri bridi |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 ax-gen1 224 ax-spec1 228 ax-qi1 234 ax-ro1-nf 249 ax-ex 416 ax-eb 418 ax-eq 420 |
| This theorem depends on definitions: df-go 83 df-nahahu 435 df-sub 447 |
| This theorem is referenced by: subt 458 |
| Copyright terms: Public domain | W3C validator |