![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > a-comi |
Description: Inference form of a-com 187 |
Ref | Expression |
---|---|
a-comi.0 | ⊢ ko'a .a ko'e bo'a |
Ref | Expression |
---|---|
a-comi | ⊢ ko'e .a ko'a bo'a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a-comi.0 | . 2 ⊢ ko'a .a ko'e bo'a | |
2 | a-com 187 | . 2 ⊢ go ko'a .a ko'e bo'a gi ko'e .a ko'a bo'a | |
3 | 1, 2 | bi 101 | 1 ⊢ ko'e .a ko'a bo'a |
Colors of variables: sumti selbri bridi |
Syntax hints: btb 3 .a sja 183 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 ax-go-trans 99 |
This theorem depends on definitions: df-go 83 df-ga 161 df-a 184 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |