Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  ce-left

Theorem ce-left 375
Description: Assertion for left-hand component of a {ce} union. (Contributed by la korvo, 5-Aug-2023.)
Assertion
Ref Expression
ce-leftko'a cmima ko'a ce ko'e

Proof of Theorem ce-left
StepHypRef Expression
1 du-refl 220 . 2ko'a du ko'a
21ceri-lin 373 1ko'a cmima ko'a ce ko'e
Colors of variables: sumti selbri bridi
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 43  ax-ge-re 44  ax-ge-in 45  ax-gen2 195  ax-qi2 204
This theorem depends on definitions:  df-go 61  df-ga 138  df-o 167  df-du 215  df-ce 370
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator