| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > ceri | |||
| Description: Reverse inference form of df-ce 407 (Contributed by la korvo, 5-Aug-2023.) |
| Ref | Expression |
|---|---|
| ceri.0 | ⊢ ga ko'a du ko'e gi ko'a du ko'i |
| Ref | Expression |
|---|---|
| ceri | ⊢ ko'a cmima ko'e ce ko'i |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceri.0 | . 2 ⊢ ga ko'a du ko'e gi ko'a du ko'i | |
| 2 | df-ce 407 | . 2 ⊢ go ko'a cmima ko'e ce ko'i gi ga ko'a du ko'e gi ko'a du ko'i | |
| 3 | 1, 2 | bi-rev 102 | 1 ⊢ ko'a cmima ko'e ce ko'i |
| Colors of variables: sumti selbri bridi |
| Syntax hints: ga bga 160 du sbdu 250 cmima sbcmima 319 ce sce 406 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 df-ce 407 |
| This theorem is referenced by: ceri-lin 410 ceri-rin 411 |
| Copyright terms: Public domain | W3C validator |