brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > gripauiis |
Description: Inference form of df-gripau 258 (Contributed by la korvo, 15-Jul-2024.) |
Ref | Expression |
---|---|
gripauiis.0 | ⊢ ko'a gripau ko'e |
gripauiis.1 | ⊢ ko'i cmima ko'a |
Ref | Expression |
---|---|
gripauiis | ⊢ ko'i cmima ko'e |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gripauiis.1 | . 2 ⊢ ko'i cmima ko'a | |
2 | gripauiis.0 | . . 3 ⊢ ko'a gripau ko'e | |
3 | 2 | gripauis 261 | . 2 ⊢ ganai ko'i cmima ko'a gi ko'i cmima ko'e |
4 | 1, 3 | ax-mp 10 | 1 ⊢ ko'i cmima ko'e |
Colors of variables: sumti selbri bridi |
Syntax hints: cmima sbcmima 246 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 14 ax-ge-le 34 ax-ge-re 35 ax-ge-in 36 |
This theorem depends on definitions: df-go 52 df-na.a 78 df-se 168 df-gripau 258 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |