Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  gripauiis

Theorem gripauiis 299
Description: Inference form of df-gripau 295 (Contributed by la korvo, 15-Jul-2024.)
Hypotheses
Ref Expression
gripauiis.0ko'a gripau ko'e
gripauiis.1ko'i cmima ko'a
Assertion
Ref Expression
gripauiisko'i cmima ko'e

Proof of Theorem gripauiis
StepHypRef Expression
1 gripauiis.1 . 2ko'i cmima ko'a
2 gripauiis.0 . . 3ko'a gripau ko'e
32gripauis 298 . 2ganai ko'i cmima ko'a gi ko'i cmima ko'e
41, 3ax-mp 10 1ko'i cmima ko'e
Colors of variables: sumti selbri bridi
Syntax hints:  cmima sbcmima 282
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 43  ax-ge-re 44  ax-ge-in 45
This theorem depends on definitions:  df-go 61  df-na.a 88  df-se 182  df-gripau 295
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator