Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  mupliri

Theorem mupliri 316
Description: Reverse inference form of df-mupli 312 (Contributed by la korvo, 23-Aug-2023.)
Hypothesis
Ref Expression
mupliri.0ge ko'a ckaji ko'e gi ko'a cmima ko'i
Assertion
Ref Expression
mupliriko'a mupli ko'e ko'i

Proof of Theorem mupliri
StepHypRef Expression
1 mupliri.0 . 2ge ko'a ckaji ko'e gi ko'a cmima ko'i
2 df-mupli 312 . 2go ko'a mupli ko'e ko'i gi ge ko'a ckaji ko'e gi ko'a cmima ko'i
31, 2bi-rev 70 1ko'a mupli ko'e ko'i
Colors of variables: sumti selbri bridi
Syntax hints:  ge bge 33  cmima sbcmima 246  ckaji sbckaji 268  mupli sbmupli 311
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-le 34  ax-ge-re 35  ax-ge-in 36
This theorem depends on definitions:  df-go 52  df-mupli 312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator