| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > simsarii | |||
| Description: Reverse inference form of df-simsa 357 (Contributed by la korvo, 6-Aug-2023.) |
| Ref | Expression |
|---|---|
| simsarii.0 | ⊢ ko'a ckaji ko'i |
| simsarii.1 | ⊢ ko'e ckaji ko'i |
| Ref | Expression |
|---|---|
| simsarii | ⊢ ko'a simsa ko'e ko'i |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simsarii.0 | . . . 4 ⊢ ko'a ckaji ko'i | |
| 2 | simsarii.1 | . . . 4 ⊢ ko'e ckaji ko'i | |
| 3 | 1, 2 | ge-ini 55 | . . 3 ⊢ ge ko'a ckaji ko'i gi ko'e ckaji ko'i |
| 4 | 3 | eri 149 | . 2 ⊢ ko'a .e ko'e ckaji ko'i |
| 5 | 4 | simsari 361 | 1 ⊢ ko'a simsa ko'e ko'i |
| Colors of variables: sumti selbri bridi |
| Syntax hints: tsb 1 tss 2 ckaji sbckaji 342 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 df-e 147 df-simsa 357 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |