![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > simsarii |
Description: Reverse inference form of df-simsa 357 (Contributed by la korvo, 6-Aug-2023.) |
Ref | Expression |
---|---|
simsarii.0 | ⊢ ko'a ckaji ko'i |
simsarii.1 | ⊢ ko'e ckaji ko'i |
Ref | Expression |
---|---|
simsarii | ⊢ ko'a simsa ko'e ko'i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simsarii.0 | . . . 4 ⊢ ko'a ckaji ko'i | |
2 | simsarii.1 | . . . 4 ⊢ ko'e ckaji ko'i | |
3 | 1, 2 | ge-ini 55 | . . 3 ⊢ ge ko'a ckaji ko'i gi ko'e ckaji ko'i |
4 | 3 | eri 149 | . 2 ⊢ ko'a .e ko'e ckaji ko'i |
5 | 4 | simsari 361 | 1 ⊢ ko'a simsa ko'e ko'i |
Colors of variables: sumti selbri bridi |
Syntax hints: tsb 1 tss 2 ckaji sbckaji 342 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
This theorem depends on definitions: df-go 83 df-e 147 df-simsa 357 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |