brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > eri |
Description: Reverse inference form of df-e 125 (Contributed by la korvo, 17-Jul-2023.) |
Ref | Expression |
---|---|
eri.0 | ⊢ ge ko'a bo'a gi ko'e bo'a |
Ref | Expression |
---|---|
eri | ⊢ ko'a .e ko'e bo'a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eri.0 | . 2 ⊢ ge ko'a bo'a gi ko'e bo'a | |
2 | df-e 125 | . 2 ⊢ go ko'a .e ko'e bo'a gi ge ko'a bo'a gi ko'e bo'a | |
3 | 1, 2 | bi-rev 80 | 1 ⊢ ko'a .e ko'e bo'a |
Colors of variables: sumti selbri bridi |
Syntax hints: btb 3 ge bge 42 .e sje 124 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 43 ax-ge-re 44 ax-ge-in 45 |
This theorem depends on definitions: df-go 61 df-e 125 |
This theorem is referenced by: pameiii 292 simsarii 325 kazmi-funii 565 |
Copyright terms: Public domain | W3C validator |